Second order alternating harmonic number sums

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences of Alternating Multiple Harmonic Sums

By convention we set H(s;n) = 0 any n < d. We call l(s) := d and |s| := ∑d i=1 |si| its depth and weight, respectively. We point out that l(s) is sometimes called length in the literature. When every si is positive we recover the multiple harmonic sums (MHS for short) whose congruence properties are studied in [9, 10, 17, 18]. There is another “non-strict” version of the AMHS defined as follows...

متن کامل

Congruences Involving Alternating Multiple Harmonic Sums

We show that for any prime prime p = 2, p−1 k=1 (−1) k k − 1 2 k ≡ − (p−1)/2 k=1 1 k (mod p 3) by expressing the left-hand side as a combination of alternating multiple harmonic sums.

متن کامل

Some results on q-harmonic number sums

In this paper, we establish some relations involving q-Euler type sums, q-harmonic numbers and q-polylogarithms. Then, using the relations obtained with the help of q-analog of partial fraction decomposition formula, we develop new closed form representations of sums of q-harmonic numbers and reciprocal q-binomial coefficients. Moreover, we give explicit formulas for several classes of q-harmon...

متن کامل

Harmonic number sums in closed form

We extend some results of Euler related sums. Integral and closed form representation of sums with products of harmonic numbers and cubed binomial coefficients are developed in terms of Polygamma functions. The given representations are new. AMS subject classifications: Primary 11B65; Secondary 33C20

متن کامل

Mod p structure of alternating and non-alternating multiple harmonic sums

The well-known Wolstenholme’s Theorem says that for every prime p > 3 the (p−1)-st partial sum of the harmonic series is congruent to 0 modulo p2. If one replaces the harmonic series by ∑ k≥1 1/n for k even, then the modulus has to be changed from p2 to just p. One may consider generalizations of this to multiple harmonic sums (MHS) and alternating multiple harmonic sums (AMHS) which are partia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2016

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1613511s